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A Stochastic Analysis of the Flow of Two Immiscible Fluids in Porous Media: 
The Case When the Viscosities of the Fluids are Equal 
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Abstraet-A new stochastic theory is developed to explain the flow of two immiscible fluids in porous lnedium when 
the viscosity difference t~tween two fluids is zero. In an individual micropore the radius of curvature of the interface 
separating the tluids is a.ssumed constant and flow is modeled by the randoln jumping of microscopic interfaces. A 
one dimensional model composed of an arra~, of paralld capitla O tubes of constant radius is analyzed in detail. For 
the case in which two fluids ha~,e equal viscosity an analytical ~)lation is obtained. The fluid displacement process is 
Fickian and dispersion is described in terms of a diffusion or spreading constant. 
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INTRODUCTION 

Flow in a porous medium continues to attract a great deal of  at- 
tention both experimentally and theoretically, Original applications 
from this research were mainly in the field of  petroleum recovery 
[Greenkom, t983]. While this application is still important to this 
day, new emenging applications especially in environmental prob- 
lems, such as groundwater contamination [Lesage et aL 19921, dis- 
persion of toxic chemicals in soil [Gerstl et aL, 19891, hazardous 
waste transport in deep well disposal [Aubert, 1986_1, cleaning up 
of contaminated sites iNn(man et aL 19931 continue to grow, Other 
application areas [Chun et al., 1990; Kim et al,, 1996: Yoon et at,, 
I998_1 also get paid increasing attention. Recentlly~ application of 
this research has been extended to the medical area especially in 
the fields of cardiology and radiology. Such a wide range of appli- 
cations should really come as no surprise when one considers the 
fact that porous structures are ubiquitous in nature. 

In general when two-phase immiscible fluids are flowing in po- 
rous media, unstable flow (viscous flngering't may result due to the 
regime where one fluid is less viscous than the other. The criteria 
on fluid instability result from viscosity, interfacial tension and pro- 
perties of  media, The displacement of  immiscible fluids is of  im- 
portance in many processes mentioned above. In those areas, an 
understanding of the relevant mechanisms is essential for the stor- 
age and the transport of  fluids in porous media. Three diflk-'rent ap- 
proaches are given to describe the mechanisms linked to the dis- 
placement of  two immiscible fluids, The first successful theory of 
fluid instability in case of  adverse viscosity ratio was put forward 
by Saffman and Taylor [1958, 19591 and independently by Chuoke 
et al. [1959]. This is the most widely studied case as it represents 
existing conditions in reservoir angineering. The stability theory is 
analogous to the flow of two immiscible fluids between two closely 
spaced horizontal plates (HebShaw cell). Secondly, when capillary 
forces play a dominant role and the viscosities of  the twofluids are 
equal, planar macroscopic interface separating two fluids is found, 
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This arises because capillary forces act equally in all directions re- 
suiting in isotropic flow. The concepts of  percolation theory were 
introduced by Broadbent and 1 tammersley [1957] to study how the 
random properties of a medium influence the flow of fluid through 
it. 

A new form of percolation theory, called invasion percolation 
theory, was developed in the 1980's [Chandler et al., I982; Wikin- 
son et al, f983], Willemsen [19831 also designed a Monte Carlo 
data processing scheme to analyze the real experiment data, Paral- 
lel treatments but with a different interpretation of results were also 
proposed by De Gennes et al, [19781, Lenormand [1980], Lea'son 
et al. [19811. A major weakness of  these percolation models was 
their exclusive reliance on capillary size. They did not lake into ac- 
count the effects of  viscosity and pressure gradient. In a third ap- 
proach a statistical method, employing the principles of  DifFusion 
Limited Aggregation, was used by Wit~en and Sander [1981, 1983] 
to model simple displacement problems. Recently, Paterson [1984] 
used the DLA approach to simulate two-fluid displacement in po- 
rous media when the viscosity of  the injected fluid is very small 
compared to that of  the other fluid. Nimnan et al. [1985] showed 
that fractal lingers were obtained when water displaced a polymer 
solution (of very high viscosity) in a f lele-Shaw cell. The term ~ac-  
tat" is used to denote any object that has a sprawling, tenuous and 
fronded pattern. They proceeded to account for their experimental 
results by using a DLA approach. 

Unlike previous approaches, the present analysis is based on a 
stochastic model. In this model a porous medium is considered to 
be equivalent to a network of uniform capillaries and flow occurs 
within a random microscopic capillary network, This paper chiefly 
concerns on with the dynamic fluid behavior that takes place in a po- 
rous medium. An analytical expression is developed and can de- 
scribe fluid saturation distribution that agees qualitatively with that 
seen in experiment [Wang, 19831. The one-dimensional maatment 
of  the problem is given rigorously and solved exactly for the case 
when the viscosities are equal, A large lithological and mineralogi- 
cal variation among diflkrent porous media (sandstone, limestone, 
etc) may affect surface chemistry, resulting in pore-fluid-grain in- 
teraction. But this approach can also be extended to systems in which 
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Fig. 2. Microscopic interface with constant radius of curvature in 
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Fig. 3. One dimensional network of a porous medium consisting 
of M parallel tubes. 

mental character of  a porous displacement process that confirms its 
basic stochastic character. In addition, the size of  the particles (and 
thus the paths) is not uniform: therefore, there is certain random- 
ness associated with fluid motion in a porous medium. 

Although a real porous medium is three dimensional, the sim- 
plest case is for immiscible displacement in a single direction. An 
array of non-interconnected capillaries is not a satisfactory cmfig- 
uration since it lacks stochastic character. Randomness can be built 
into the model in the lbllowing way. The model of  a porous medi- 

the liquids interact with the porous medium, Due to this advantage 
the current approach can be used to study various environmentally 
related problems like the cleaning up of contaminated sites where 
a thorough knowledge of both the flow pat~em of  the liquid in the 
soil and the manner in which they interact in the soil is required. 

THEORY 

1. A Proposed One-Dimensional Model of a Porous Medium 
We may think of a porous medium as a random network struc- 

ture consisting of pores and throats as shown in F'i~ 1, It is assumed 
that all network elements (micropores) have the seane size and all 
network points (or junctions) have a similar character, in each of 
the micropores there exists a microscopic interface that separates 
two immiscible fluids (Fig. 2), Moreover; it is assumed that all these 
microscopic interfaces have the same radius of  curvature and this 
radius remains virtually constant throughout the displacement. This 
is a basic postulate of  the theory. It is possible that fluctuations in 
curvature occur and mechanisms such as Hainc's jumps, film spread- 
ing and contact angle hysteresis do take place in porous medium 
[Chert, 1986; Chert et aL [985]. ]hesc are neglected in the current 
model. Also, it has been experimentally shown that the contactangle 
depends upon the interracial motion [Dussan, 1976: Ngan et at., 
t 982]. In this analysis it is assumed that those are minor effects and 
may be ignored in any macroscopic description of fluid motion in 
porous media. Because fluids me immiscible, laminar dispersion 
resulting from the Poiseuille velocity distribution within a given 
capillary does not occur and plug flow can be assumed everywhere. 
A stochastic theory can be constructed for fluid displacement such 
a model media. 

in real porous media the distance between particles is of the same 
order of  magnitude as the radius of the particles, Fluids flow through 
the tortuous path between the particles; these paths moreover vary 
in a complex and random manner repeatedly joining, dividing and 
rejoining with each other. Given any two points in a porous medi- 
um there are a number of  paths connecting them, it is this funda- 

um still consists of  an array of M capillaries as in Fig. 3. Random- 
hess is introduced by considering motion along a capillary as a series 
of  jumping steps rather than a continuous motion. We number the 
capillaries, [ = t, to i-=M. It is assumed that the radii ofalI these cap- 
illaries are equal, r, We can divide these capillaries into a laege num- 
ber of  segments each of length le. The length tp is much smaller than 
L where L is the total length of a capillary. We ago number the seg- 
ments in each capillary. 

A displacement process in this array of tubes is described in terms 
of the random jumping of an interface from one end of a segment 
to the other end as shown in Fig. 4. Only one interthce in all the 
capillaries is allowed to jump at any one moment. We are ink'r- 
ested in the positions of  these interfaces at time scales which are 
much larger than the time period of a jump, 
2. The Case when the Viscosities of  the Fluids are Equal 

Let's think of two immiscible fluids that migrate in the rr~tel of 
a porous medium. The two fluids are entirely immiscible and have 
the same viscosity. At t=0, the displaced fluid occupies the com- 
plete volume of the capillaries and the interfaces between displaced 
and disphcing fluid are uniformly placed at the entry to each cap- 
illary, Between time t -0  and t-t, a pressure difference AP is ap- 
plied to all capillaries and let V cc of  displacing fluid enter the array. 
We write, 

Interface Prior  te  J u m p  

t I I ~ I I I f I 1 t 

J u m p  Length,  ]p 

F :f 1 I t I I 1 1 I l 

I n t e r f a c e  a f t e r  a J u m p  

'. T o l a l  L e n g t h  o f  a Cap i l l a~y~  L )d 

Fig. 4. Basic random fluid step in one dimensional network. 
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where Q is the constant volumetric f l t ~  r rate (kP is ctmtrolh:d 
that Q is always conskmO. There is onk' one interPace in each cap- 
illary e ra  porous mt~el during ~c  displac~m~ent ptx~'c~s. At a cer- 
tain instant, the probabilib' p. thai any one of these interfaces may 
.lump is: 

Under afore~id assumption Wire/m,. N) becom~ the pmb'a- 
bility Nat the interface in the ~,cond capilkD' is at ptMfion m,, but 
nmv after N-m~ steps and in a reduced system containing M-1 
capillaries. We thus wriw: 

{ N - m  )] _ - . r , - r a  

W l m - / m ~ ' N ) = \ V l m " N - m ~ )  m . ' . l N - m , - m  )1 p~'q~ f71 

I p=~ {2~ 

The probability tba't an interface will not jump. or will remain at its 
initkfl positiori is 

q - l - p  (3t 

The total number of jumps taken for a lime interval ik)m t=0 to 
t=t is: 

v 
N = 

cr-l, 

N = Qt {4t 
cr-l, 

Fig. 5 shows the interfaces in all lhe~e capilktries may be di> 
tributed al dye end of this time int~-al. Contained in the M capillar- 
ies there are akvays a total ofM inlerlhces Ivfore b~-akthrough. We 
IIOW pOR the qucs-tion: What is lhe probabllib' that an interface in 
the first capil]aD' is fimnd at m:, the interface ia the sr cap- 
illmy Ls fotind aI me. the interl~c in the third capillary is foand ... 
and so on arid so lbrth? 

-Io answer this queslitm w'e must first consider the prokabiiiry 
thai the interface in the first capillalT is lbund at mt after N jumps 
irrespecUve of the lmsitions of the interfac~.~ in the other capillaries. 
After simple mathematical manipuhtkm the required pmbabilib, 

l Wl m:. N ) can be postulated: 

N! ..... W{m.N) p"'q {5t 
m,]{N - i n : i ]  

1 
P - - M -  I 

q. = I - p -  = M _ t  

Fxt. t6) then b~ct~mes atk, r suhstittltion from the previous equa- 
tions. 

W0n, m. N ) =  N! I/'~/_:_./' . i {M - 2 )  ~ ......... m:',m ,](N -m -m ,),kM ] 
19) 

Fix)in th~ above equations we may conclude that the pmbabi li b- 
that the inlerthce in the firs, capiIla~- is at point m:, the second at 
in:, and so on and so forth is: 

w l  u , , . . .m ,, :  t,Cii) II:-', m , .  " 
( l o t  

The above equmion tblMws k.'vau~ the last term in Eq. fg) is 
unity,. I fN and all the m's arc lane numbers (m,.,'N+<l). we mav 
take logarithms and apply' Stirling's approximatkm to get 

=,,,- 
'iV(m: m . . . .  m ,I =A e x p - ' ~ - ' ( m  

,:, 2Np 
f l i t  

where the constant A is intl,c~uced tbr proper nommlization and 
.=-m .... Np. 

It is convenienl ls~ introduce instead ogre tile displacement x. a~: 

\=m,/~, ( 12t 

Eq. (5) is based on the e_ssumptkm that.lumps hi any, capillary. at 
any' Ix~sition or time are ~xlually wobabk. This is the case only when 
the fluid vi,~osities ar~ equal. Under t h ~  m~mdhions the pressure 
drt~ for a cc~]stant time Rile Q will Na indetx>ndenl ofthn~. We now 
ask the question, what ix Lhe pm 'Ntlyilily, that the inix'rface in the first 
capithry is tbund at m~ and the in*erii~ce in the s~xamd capillaO' is 
f~rand at m., again after N jumps? From BWes" R~mmla the resuk- 
ing equatitm becomes 

wltere [~, is the length o f  a step. As a result, 

...'%) = A  exp _,=,~-:(,c.-(x) )" 
W(x, \ : ,  , (,,_~ ,== 2Npt/ 

Dispersion coefficient D is defined by, 

D =QP/" 
2rgr-' 

( t3t  

(t4} 

\V{1r Tn:. N t=\Vill~2.,'m. N} W(nl!. N) {~q and the Eq. t 13 ) becomes. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 7 (  

. . . .  , , : , . : ,  , , ,--*, .................... 7 7 :  

' [ i : : i  ........... . . . . . . . . . . . . . . . . . . . . . . .  ; '  

Fig. 5. R a n d o m  pos i t ions  o f  interfaces  a|  s o m e  t ime.  

a ~ p _ , ~  ~ ~ W(x,, x: .... x.) =.,'777_. ( t5f 
t;'-' ~ 4Dr 

,Nom~a{izatioll constant A caT] be estimated since the probability 
of tinding t ~  inli~rPaces all over space is unil~,. This pmkabilib' thin 
the int~ylace in the firsl capillary' is at x,. the interPace in the ~cond 
capillaLy is at x_,, and so ~m said m {brih. all al time I. i.e. W(x~. x_,, 
... x:r bectRries 

L,'- 

[ -7 -  '='~--,[x +[~1) : 

" \4rcl_)t] ~, ,=! 41)t J 
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where [3 the average interface rate is given by: 

13- O It7) 
~r~M 

The delta function is defined as: 

[8( x -x,~)dx = 1 when x :::: x .~  

[6(x -x~)dx =0 otherwise 118) 

The reach the delta function arises is because the volumetric flow 
rate is constant, i.e., at all times 

. L * -  t 

x, rtr~ +x.Ldtr~ =Or 119) 

The differential equation which satisfies Eq. (16) is the famous dif- 
fusion equation and is given by 

I t l Z ~  "" "- 

[ t  I0  ~ "  

r 
OOg ~" 

- P / 

i / \ 
0 02 

DIS IANf E 

Fig. 6. Probabilily of finding an interface as a function of position. 

3W ' =~' + OW +D'= 'j ~ dW+: 

Thus Eqs. (20) and (16) are the required complete solution for the 
case when the viscosities of  the fluids are the identical. 

The probability that the interface in the first capillary is at x~, the 
interface in the second capillary is at N ..... the interface in the nth 
capillary is at x,,, irrespective of  the configuration of the remaining 
M - n  interfaces is: 

Wr .... x.: t)=j[...jw<x,,x_, .... x.,,: t)dx,,+:dx,,+:...dx.,, L 

(21) 

If we define 

M~ 
p~"~(x~.x_. .... x,;: t ) -  W~"~(x~.x2 .... x , / .  t) ~22) 

(M n)! 

then ff"(x, x_~ . . . .  x,; t) is the number of  interfaces found between 
x~ and xr+-dx~, another between x, and xz-~-dx,, and so on and so 
forth, We also note from Eq, (22) the following normalization condi- 
tion on p~,l: 

_ M! 
-[-[  fP~ dx" (m-n) !  (23) 

We may use pC'~(x, x2 . . . .  x,,: t) to find the fluid saturation (for this 
example fluid is considered the displacing fluid) at x and t. The fluid 
saturation O.~ at point x is defined by 

~ ,  =number ofcapilIaries fiIled x~.ith fluid at point x (24) 
total number of capillaries 

where p'*(x, t) is given by 

pe'~(x,t) - M F ~ J ~  ...j~ w(x,,x2 .... x~Ddxzdx3...dx.,,_, (27) 

p'%x, t) is most important since it gives the number of  interfaces 
between x and x+dx at t. Substituting Eq. (t6) into Eq, (27) and 
carrying out the integration we will finally obtain: 

M (x +13t) ~ (28) 
p/~(x,t) - ~ e x p  4Dt 

Eq, (28) enables the distribution function p'%x, t) to be obtained 
from fluid saturation data, Such sattration data is commonly ob- 
tained when medical imaging techniques, such as CT/MR[, are used 
to study fluid flow in a porous medium, 

A graph of  Eq. (28) is illustrated in Fig. 6. Substituting the above 
equation into Eq. (25) we get: 

~,~ M 1 (x +[3t,): 
=M(4rcDt) ''~exp ' 4Dt (29) 

(30) 

l x +[3t 
=ger fc (  ' - ]  (311 

where the error function is: 

.) 
err(y) = ~ :  e',:p -y2dy (32) 

The number of  capillaries filled with fluid at point x is equivalent 
to number of capillaries in which the interfaces are at point x or gone 
beyond it. We thus write, 

A graph of  fluid saturation is given in Fig. 7. 

CONCLUSIONS 

[7 pC ~(x,t)dx 
~ ,  125 ) 

M 

also 

u-=p (x,t,) =p(L~(x,t ) f26~ 
3x M 

A new stochastic theory has been proposed to describe fluid flow 
in a porous medium that can be modeled as an interconnecting net- 
work of  identical pores and throats, Before an inve~gation of  a three- 
(or two-) dimensional version, a one-dimensional model was ana- 
lyzed in depth. In the one-dimensionaI model the porous medium 
is modeled as an array of  parallel capillary tubes all of  constant m- 

K o r e a n  J. C h e m .  E n g . ( V o l .  18,  N o .  6 )  
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Fig. 7. Displacing fluid saturation as a function of position. 

dius. The capillary tube is divided into a large number of  segments 
whose length is much smaller than the total length of the capillary, 
Fluid displacement is modeled by the random jumping of the mi- 
croscopic interfaces from one end of the seD-nent to the other end 
and the jumps are independent, in the case when the viscosities of  
the two fluids are equal, an analytical solution is given and fluid 
displacement can be described by the diffusion equation. It is shown 
that dispersion coefficient can be proportional to the volumetric flow 
rate and the displacement process can be explained to be Fickian. 
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N O M E N C L A T U R E  

D : dispersion coefficient {m~'/sl 
L : length of  the porous medium [m] 
1., �9 length of  a jump [m] 
M : total number of  capillaries [number] 
<m> : average number of  jumps taken by an inter face [num- 

ber] 
m, : number of  jumps taken by the interface in capillary i 

[number] 
N : total number of  jumps taken from time t=0 to t=t [num- 

ber] 
P :pressure [Pa] 
p : probability that any one interface may jump [-] 
Q : volumetric flow rate [m-%] 
q : probability that any one interface may not jump [-1 
r<. :radius of  a capillary [m] 
t : t ime is] 
V : volume of  displacing fluid [m ~] 
W(m~, N) : the probability that the interface in capillary t takes m. 

jumps when the total number of  jumps taken by all in- 
terfaces (including capillary f) is N [-1 

W(m~, m_,. .... m.~s) : the probability that the interface in capillary I 
lakes m~ jumps, the probability that the interface in 

capillaly 2 takes m: jumps, and so on and so f o l l h ,  

when the total number of  jumps taken by all inter~itce 
is N [-I 

W(x~, x, .... x.v; t) : probability that the interface in the first capiI- 
lary is found between x~ and x~ fdx~, the interface in 
the second capillary is found between x, and x=+dx_,.0 
and so on and so forth, all at time t [f/m "-~] 

W'"'(x> x_, .... xu; t): probability that the interface in the first cap- 
illary is found between x~ and x~+dx~, the interface in 
the second capillary is found between N and x=t dN, 
and so on and so forth, the in- terrace in the n-th capil- 
lary is found between y,, and x,, +d.%, irrespective of  
the positions of  the other interfaces, at time t [ 1/rg'] 

x, : position of  interface i [m] 

Greek Letters 
[3 �9 average displacement velocity at which all the inter- 

O .  

g 
pr"(X, t) 

faces move [m/s] 
: porosity of  the porous medium [-] 
: fluid saturation [-] 
: viscosity of  displacing fluid [kg/ms] 
: the number of  interface between x and x-+-dx at time 
t [number/m] 
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