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A Stochastic Analysis of the Flow of Two Immiscible Fluids in Porous Media:
The Case When the Viscosities of the Fluids are Equal
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Abstract—A new stochastic theory is developed to cxplain the flow of two immiseible fuids in porous medium when
the viscosity difference between two fluids is zero, In an individual micropore the radius of curvature of the interface
separating the fluids is assumed constant and flow is modeled by the random jumping of microscopic interfaces, A
one dimensional model composed of an array of paralict capillary tubes of constant radius is analyzed in detail. For
the case in which two fluids have equal viscosity an analytical solution is obtained. The fluid displacement process is
Fickian and dispersion s described in terms of a difiusion or spreading constant.
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INTRODUCTION

Flow in a porous medium continues to atiract a great deal of at-
tention both experimentally and theoretically. Original applications
from this research were mainly in the feld of petroleum recovery
{Greenkorn, 1983]. While this application is still important to this
day, new emerging applications especially in environmental prob-
lerns. such as groundwater contamination [Lesage et al., 1992}, dis-
persion of toxic chericals in soll [Gerstl et al., 1989]. hazardous
waste transport in deep well disposal jAubert, 1986]. cleaning up
of contaminated sites [Noonan et al., 1993] continue to grow. Other
application areas [Chun et al., 1990; Kim et al,, 1996; Yoon et al.,
1998] also get paid increasing attention. Recently. application of
this research has been extended to the medical area especially in
the fields of cardiology and radiology, Such a wide range of appli-
cations should really come as no surprise when one considers the
fact that porous structures are ubiquitous in nature.

In general, when two-phase immiscible fluids are flowing in po-
rous media, unstable flow (viscous fingering) may result due to the
regime where one fluid is less viscous than the other, The criteria
on fluid instability result from viscosity, interfacial tension and pro-
perties of media. The displacement of immiscible fluids is of im-
portance in many processes mentioned above. In those areas, an
wnderstanding of the relevant mechanisms is essential for the stor-
age and the transport of fluids in porous media. Three different ap-
proaches are given to describe the mechanisms linked to the dis-
placement of two immiscible fluids. The first successfud theory of
fluid instability in case of adverse viscosity ratio was put forward
by Saffinan and Taylor [1938, 1959} and independently by Chuoke
et al. [1939]. Fhis is the most widely studied case as it represents
existing conditions in reservoir engineering. The stability theory is
analogous to the flow of two Immiscible fluids between two closely
spaced horizontal plates (Hele-Shaw cell). Secondly, when capillary
forces play a dominant role and the viscosities of the two fluids are
equal, planar macroscopic interface separating two fluids is found.
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This arises because capillary forces act equally in all directions re-
sulting in isotropic flow. The concepts of percolation theory were
introduced by Broadbent and Hammersley [1957] to study how the
randorn properties of a medium influence the flow of fluid through
it.

A new form of percolation theory, called invasion percolation
theory, was developed in the 1980°s [Chandler et al., 1982; Wikin~
son et al.. 1983]. Willemsen [{983] also desighed a Monte Carlo
data processing scheme to analyze the real experiment data. Paral-
let treatments but with a different interpretation of results were also
proposed by De Gennes et al. [1978], Lenormand [1980]. Larson
et al. [1981]. A major weakness of these percolation models was
their exclusive refiance on capillary size. They did not take info ac~
count the effects of viscosity and pressure gradient. In a third ap-
proach a statistical method, employing the principles of Diffusion
Limited Aggregation, was used by Witten and Sander {1981, 1983]
to model simple displacement problems. Recently, Paterson [1984]
used the DLA approach to simulate two-fluid displacement in po-
rous media when the viscosity of the injected fluid is very small
compared fo that of the other fluid. Nittman et al. [1983] showed
that fractal fingers were obtained when water displaced a polymer
solution (of very high viscosity) in a Hele-Shaw cell. The term “fac-
tal” s used to denote any object that has a sprawling, tenuous and
fronded pattern. They proceeded to account for their experimental
results by using a DLA approach.

Unlike previous approaches. the present analysis is based on a
stochastic model. In this model a porous mediam s considered to
be equivalent to a network of unifonn capiliaries and flow occurs
within a random microscopic capiilary network. This paper chiefly
concerns on with the dynamic fluid behavior that takes place in a po-
rous medium. An analytical expression s developed and can de-
scribe fluid saturation distribution that agrees qualitatively with that
secn in experiment [Wang, 1983} The one-dimensional treatment
of the problem is given rigorously and solved exactly for the case
when the viscosities are equal. A large lithological and mineralogi-
cal variation among different porous media {sandstone, limestone,
ety may affect surface chemistry, resulting in pore-fluid-grain in-
teraction. But this approach can also be extended to systems in which
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Fig. 2. Microscopic interface with constant radius of curvature in
a micropere.

the liquids interact with the porous medium, Due to this advantage
the current approach can be used to study various environmentally
refated problems kke the cleaning up of contaminated sites where
a thorough knowledge of both the flow pattern of the liquid in the
soil and the manner in which they interact in the soil is required.

THEORY

1. A Proposed One-Dimensional Model of a Porous Medinm

We may think of a porous medium as a random network struc-
ture consisting of pores and throats as shown in Fig, 1, It is assumed
that all network efements (micropores) have the same size and all
network points (or junctions) have a similar character. In each of
the micropores there exists a microscopic interface that separates
two immiscible fluids (Fig. 2. Moreover, it is assumed that all these
microscopic interfaces have the same radius of curvature and this
radius remains virtually constant throughout the displacement. This
is a basic postulate of the theory. It is possible that fluctuations in
curvature occur and mechanisms such as Haine's jumps, film spread-
ing and contact angle hysteresis do take place in porous medium
{Chen, 1986; Chen ef al.. 1985], These are neglected in the current
model. Also, it has been experimentally shown that the contactangle
depends upon the interfacial motion [Dussan, 1976: Ngan et al.,
F982]. in this analysis it is assumed that those are minor effects and
may be ignored in any macroscopic description of fluid motion in
porous media. Because fluids are immiscible, laminar dispersion
resulting from the Poiseuille velocity distribution within a given
capiltary does not occur and plug flow can be assumed everywhere.
A stochastic theory can be constructed for fluid displacement such
a model media.

In real porous media the distance between particles is of the same
order of magnitade as the radios of the particles. Fluids flow through
the tortuous path between the particles; these paths moreover vary
in a complex and random manner repeatedly joining. dividing and
rejoining with each other, Given any {wo points in a porous medi-
um there are a number of paths connecting them. It is this finda-
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Fig. 3. One dimensional network of a porous medium consisting
of M parallel tubes.

mental character of a porous displacement process that confirms its
basic stochastic character. In addition, the size of the particles (and
thus the paths) is not uniform: therefore, there is certain random-
ness associated with fluid motion in a porous medium.

Although a real porous medium is three dimensional, the sim-
plest case is for immiscible displacement in a single direction. An
array of non-interconnected capillaries is not a satisfactory config-
uration since it lacks stochastic character. Randonness can be built
into the model in the following way. The model of a porous medi-
um stilt consists of an array of M capillaries as in Fig. 3. Random-
ness is ntroduced by considering motion along a capiliary as a series
of jumping steps rather than a continuous motion. We number the
capiilaries, i=1, to i=M. It is assumed that the radii of all these cap-
illaries are equal, 1. We can divide these capiliaries into a large num-
ber of segments each of length /.. The length /, is much smaller than
L where L is the total length of a capillary. We also number the seg-
ments in each capillary.

A displacement process in this array of tubes is described in terms
of the random jumping of an interface from one end of a segment
to the other end as shown in Fig 4. Only ong interface in all the
capiilaries is allowed to jump at any one moment. We are inter-
ested in the positions of these interfaces at time scales which are
much larger than the time period of a jump.

2. The Case when the Viscosities of the Fluids are Equal

Let's think of two immiscible fluids that migrate in the model of
a porous medium, The two fluids are entirely immiscible and have
the same viscosity. At =0, the displaced fluid occupies the com-
plete volume of the capillaries and the interfaces between displaced
and displacing fluid are uniformly placed at the entry to ach cap-
illary. Between time =0 and t=t, a pressure difference AP is ap-
plied to alf capiliaries and let V cc of displacing fluid enter the array.
We write,

Interface Prior to Jump

I T | I | I ! I |

Jump Length, Ip
<>

I f | I I | 1 |

Interface after a Jump

———— Total Length of a Capillary, [ —————

Fig. 4. Basic random fluid step in one dimensional network.
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V-t (i

where O is the constant volurmric flow mte (AP & controlked so
that (Q b abways constant s, There is ondy one interlace in cach cap-
Hlary of a poreus miodel during the displacoment process. Ad a cer-
tain instant, the probability p. that wy one of these inlerfaces may
jump s

-4
M

£33

The prohabitity that an merface will not jump, or will remain of its
mitial position is

y~li-p (3
The total number of jumps tahen for a time nterval from £0 to
t=t is:

=Y

T,
n=2L 4

i,

Fig. 5 shows the interfaces in all these capillaries may be dis-
tributed &t the end of this time imterval, Contained in the M capitlar-
ies there are abways a lotal of M interlices before breakthrough, We
now pose the quostion: What is the probability thot an interface in
the frst capitlary is found at my. the interface i the second cap-
Hlary is found at m., the interface in the third capillary is found ..
and so on and so forth?

To answer this quostion we must fimst consider the probability
that the interface in the first capillary is found at my after N jumps
rrespective of the positions of the mterfaces in the other capillaries,
Afler simple mathematical manipulation e requeired probabifity
Wim,. N)ean be postulated:

Nt w veu <
—_ {39
m.!(?\—m:l!p f

Wim,N1=

E4. (5) is based on the assumption that juraps nany capillary at
any position or imwe are equathy probable. This & the case only when
the fluid viscosities are equal. Under these conditions the pressure
drop for 2 constant flow rate Q will be independent of time, We now
ask the question. what i the probebility that the nterface in the first
capitlary is found at m; and the Iterface i the second capillary s
found at m, again affer N jumips? From Bayes™ formula the rosult-
iy equation becomes

Win,. m N WL N Wim. N i
Fluid 1 Fluad I
i=1
i=1
=3
e=d
M

Fig. 5. Random positions ef interfaces at some time.
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Under aforesaid assumption Wim,/m,. N) becomes the proba-
bility thet the interface in the second capillary is &l position m,, bat
now afler N—a, steps and in a reduced system containing M-1
capillaries, We thu\ Wi

: . (N-m o
W iy, NS W N— =% A .

(m.'m, Wim, N-—m) N —m 4. t7

-
PN

M2

=f—p. =—= g

4. P i i}

Eg. 6) then becomes after substitution from the previous equa-
tions.

Wim, m.,.Ni1=

Nt {1 ) [R—
— | {M-=-2) {4
L im N —m —m_-HI\M ( )

From the sbove equations we may conclude that the probuability
that the mterfuce in the st capiflary s at port m, the second at
., and so on and so furth is:

F i
. o

The above eguation follows because the last ferm in Bg. (9 is
unity, IF N and all the m's are large nembers (m/N<<1 ), we may
take logarithms and apply Strling’s approximation to get

Wim, mo, ..

— )
WM, o, . B A expr— 2‘*’-}Lﬂi (1

INp

where the constant A Is introduced for proper nomialization and
“m==Np.
i is convenient to mtroduce instead of m, the displacement x as

wEml {12

where £, is the length of a step. As a result.

. A TET =)
Wi, N, ==——eap — —_ {133
! P 2 Np
Dispersion coefficient D is defined by
Opf
==k (14
I
and the Bg. {13) becomes,
. A = Y
Wi, ., )—— A LIAY i5
LT S !‘ eXp — ; T {15}

Normalization constant A can be estimated since the probability
of finding the imerfaces all over space is unity. This probability that
the interface in the first capillary is & x,. the mterface in the woond
capiilary is a1 X, and s0 on and 5o forth, alt at time L Le. Wi, x,,

X..) betormes

-
: ) N - g, +Bil .
Wi, -, (—i—TcE_)t) { Xp— Z D ]0(\ ¥, {16}
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where B the average interface rale is given by:

B=- ESM (17
The delta function is defined as:

jé(x —x,,)dx =1 when x=x,,

jé(x —x,,)dx =0 otherwise (18

The reason the delta function arises is because the volumetric flow
rate is constant, i.e., at all times

A=t

¥ o 4, ar =0t (19

The differential equation which satisfies Eq. (16) is the famous dif-
fusion equation and is given by

amw _ !=JFE?_,W,, :=.‘Jﬂalw R

T PX DY W (20)
Thus Eqs. {20} and (16} are the required complete solution for the
case when the viscosities of the fluids are the identical.

‘The probability that the interface in the first capillary is at x,, the
interface in the second capillary is at x., .... the interface in the nth
capitlary is at x,. irrespective of the configuration of the remaining
M-—n interfaces is:

W N X ) :”...JW(xl,xz,...x_U: Ddx, 4l dxg
(213

If we define

. M .
s : W%, 0 0 (22

then p™(x,, Xa ... X, £} is the number of mterfaces found between
¥, and x,+dx,. another between X, and x,+dx.. and so on and so
forth. We also note from Eg. (22) the following normalization condi-
tion on p:

M!

I Jp™dx dx.. . dx, ey

(23)

We may use p™(X,, X, ... X,; 1) to {ind the fluid saturation (for this
example flaid is considered the displacing fluid) at x and t. The fluid
saturation Dy, at point X is defined by

_number ol capilfaries filled with fluid at point x

Dy = 24
” lotal number of capillaries (=

The number of capillaries filled with fluid at point x is equivalent
to mumber of capillaries in which the interfaces are at point X or gone
beyond it. We thus write,

[TpMxndx

D, = Y (25
also

_90y _pUin) )

™ =P"(x (26}
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Fig. 6. Probability of finding an interface as a function of positien.

where p™(x, } is given by
PP O =M]T T T Wi, xR 27

p'HEx, 1) is most important since it gives the number of interfaces
between X and x+dx at {. Substitting Eq, (16) into Eq, (27) and
carrying out the integration we will finally obtain:

M Cx B’
@rbyy s ADi

PN 0= (28)
Eq. (28) enables the distribution function p'(x, 1) to be obtained
from fluid saturation data. Such saturation data is commonly ob-
tained when medical imaging techniques, such as CT/MRU, are used
to study fiuid flow in a porous medium.

A graph of Fq. (28) is illustrated in Fig. 6. Substituting the above
equation into Eq. (25) we get:

M1 (x +By’
.= —exp (29
Marby~ " 4D
-1 1—erz("~:~ﬁ5) (30)
- NIy
:%eric(\+Bl) (30
= 2B
where the error function is:
f(y) == T 4 (32
erf{y) =—=| exp—v'dy 4]
¥ ﬁ B ¥

A graph of fluid saturation is given in Fig. 7.
CONCLUSIONS

A new stochastic theory has been proposed to describe fluid flow
in a porous medium that can be modeled as an interconnecting net-
work of identical pores and throats. Before an investigation of a three-
{or two~} dimensional version. a one-dimensional mode! was ana-
lyzed in depth. {n the one-dimensional model the porous medium
is modeled as an array of parallei capillary tubes all of constant ra-
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Fig. 7. Displacing fluid saturation as a function of pesition.

dius. The capillary fube is divided into a large number of segments
whose length is much smaller than the total length of the capillary.
Fhuid displacement is modeled by the random jumping of the mi-
croscopic iterfaces from one end of the segment o the other end
and the jumps are independent. In the case when the viscosities of
the two fluids are equal. an analytical solution is given and fluid
displacement can be described by the diffusion equation, It is shown
that dispersion coefficient can be proportional to the volumetric flow
rate and the displacement process can be explained to be Fickian.
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NOMENCLATURE

b : dispersion coefficient [m/s]

L ; length of the porous medium [m]

A : length of a jump [m]

M : total number of capiliaries [number]

<> : average number of jumps taken by an inter face {num-
ber]

m, : number of jumps taken by the interface in capillary i
[number}

N : total number of jumps taken from time =0 to t={ [num-
ber]

P : pressure [Pa]

p : probability that any one interface may jump [-]

Q : volumetric flow rate [m'/s]

q : probability that any one interface may not jump {-]

T : radius of a capillary {m]

t : time fs]

v : volume of displacing fluid [my']

W{m,. N} : the probability that the interface in capillary | takesm,
Jjumps when the total number of jumps taken by all in-
terfaces (including capillary 1) is N [-]

W(m,, m,, ... m,,}: the probability that the interface in capillary |
takes m, jumps, the probability that the interface in

November, 2001

capillary 2 {akes m, jumps, and so on and so forth,
when the total number of jumps taken by all interface
is N [-]

. ¥z, 1) : probability that the interface in the first capil-
lary is found between x, and x;+dx,, the interface in
the second capillary is found between x, and x.+dx,,
and so on and so forth, all at time t [ ']

WY, X, .. X0 1) probability that the interface in the first cap~
tlary is found between x; and x,+dx,, the interface in
the second capillary s found between x, and x,1-dx,,
and so on and so forth, the in- terface in the n-th capil-
fary is found between x, and x,+dx,, irrespective of
the positions of the other interfaces, at time ¢ {1/m}

: position of interface i [m]

WX, Xa

X

!

Greek Letters

B : average displacement velocity at which ali the mter-
faces move [m/s]

0 : porosity of the porous medium |-]

D, : fluid saturation [-]

L : viscosity of displacing fluid [kg/ms)]

pt(x.t) :the number of interface between x and x+dx at time

t [number/m]
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